112,112 research outputs found

    Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion

    Get PDF
    A cast HP ModNb alloy (Fe–25Cr–35Ni–1Nb, wt.%) was oxidised and carburised in CO–CO2 corresponding to aC = 0.1 and pO2 = 3 1016 atm at 1080 C. Formation of an external, chromium-rich oxide scale led to depletion of this metal in a deep alloy subsurface zone. Within that zone, secondary chromium-rich carbides dissolved, primary carbides oxidised, solute silicon and aluminium internally oxidised, and extensive porosity developed. Pore volumes correspond to the difference between metal loss by scaling and metal displacement by internal oxidation, assuming the scale–metal interface to be fixed. The pores are concluded to be Kirkendall void

    Numerical Simulation of Methane and Propane Reforming Over a Porous Rh/Al2_{2}O3_{3} Catalyst in Stagnation-Flows: Impact of Internal and External Mass Transfer Limitations on Species Profiles

    Get PDF
    Hydrogen production by catalytic partial oxidation and steam reforming of methane and propane towards synthesis gas are numerically investigated in stagnation-flow over a disc coated with a porous Rh/Al2_{2}O3_{3} layer. A one-dimensional flow field is coupled with three models for internal diffusion and with a 62-step surface reaction mechanism. Numerical simulations are conducted with the recently developed computer code DETCHEMSTAG^{STAG}. Dusty-Gas model, a reaction-diffusion model and a simple effectiveness factor model, are alternatively used in simulations to study the internal mass transfer inside the 100 ”m thick washcoat layer. Numerically predicted species profiles in the external boundary layer agree well with the recently published experimental data. All three models for internal diffusion exhibit strong species concentration gradients in the catalyst layer. In partial oxidation conditions, a thin total oxidation zone occurs close to the gas-washcoat interface, followed by a zone of steam and dry reforming of methane. Increasing the reactor pressure and decreasing the inlet flow velocity increases/decreases the external/internal mass transfer limitations. The comparison of reaction-diffusion and Dusty-Gas model results reveal the insignificance of convective flow on species transport inside the washcoat. Simulations, which additionally solve a heat transport equation, do not show any temperature gradients inside the washcoat

    Notranja oksidacija Cu-C in Ag-C kompozitov

    Get PDF
    The internal oxidation in copper-carbon and silver-carbon composites occurs when they are exposed to air or oxygen at high temperature. Solubility of carbon in copper or in silver is very low. The kinetics of oxidation at high temperature and activation energy were determined and the mechanism of internal oxidation was analysed. The kinetics of internal oxidation was determined for both cases and it is depended from the diffusion of oxygen following parabolic time dependence according to Wagner\u27s theory. The activation energy for Cu-C composite is 70.5 kJ/mol, and for Ag-C composite is 50.1 kJ/mol, what is in both cases close to the activation energy for the volume diffusion of oxygen in copper or in silver. In both cases gas products are formed during the internal oxidation of composites. In the internal oxidation zone pores, bubbles occur. The carbon oxidates directly with the oxygen from solid solution as long there is a contact, which breaks down with the presence of gas products. Then the oxidation occurs over the gas mixture of CO and CO2.Pri visokih temperaturah kompoziti bakra in srebra z ogljikom na zraku ali v kisiku reagirajo po mehanizmu notranje oksidacije. Topnost ogljika v trdnem bakru in trdnem srebru je zelo majhna. Analizirali smo kinetiko oksidacije kompozitov, določili aktivacijsko energijo in mehanizem notranje oksidacije. Kinetika oksidacije je pri obeh skupinah materialov odvisna od difuzije kisika in sledi parabolični odvisnosti od časa v skladu z Wagnerjevo teorijo. Aktivacijska energija procesa je za kompozit Cu-C enaka 70,5 kJ/mol, za kompozit Ag-C pa 50,1 kJ/mol, kar je blizu aktivacijski energiji za volumsko difuzijo kisika v trdnem bakru oziroma srebru. Pri oksidaciji kompozita nastajajo plinski produkti. Oksidacija ogljika poteka neposredno s kisikom iz trdne raztopine, ko pa se zaradi nastanka plinske faze stik prekine, pa preko plinske zmesi CO in CO2

    Alloying effects on the oxidation behaviour of shot-peened Co-Ni base Superalloys

    Get PDF
    The effect of shot-peening on the oxidation mechanism in Co-Ni alloys with different Co-Ni ratios and varying Cr and Al contents were investigated at 850 °C for 200 h. A characterization method using isotopic oxygen tracing combined with focused ion-beam secondary ion mass spectrometry (FIB-SIMS) was performed to study the oxidation mechanism in both conditions. Multi-layered oxides in both peened and un-peened conditions consisted of chromia-rich scale on the outermost surface and a protective alumina-rich layer as the internal scale. Internal oxidation to different depths occurred within the alloys with the formation of alumina particles within a γ\u27-depleted zone. The morphology of the sub-surface oxides differed between the two surface conditions examined. Oxidation performance was quantified by measuring cross-sectional damage depths of the outer scale (chromia) and the internal oxidation depth (oxide fingers and y’-depleted depth). Oxidizing environments can promote recrystallization in the near-surface of the shot-peened conditions. The sub-surface oxide penetration for the shot-peened condition occurs to a more uniform depth and is associated with the grain boundaries of small recrystallized grains. This work forms part of an ongoing investigation to determine the effects of shot-peening in this alloy system with the oxidation performance to equivalent polished material at 850 °C

    Atomic scale characterization of the nucleation and growth of SnO2 particles in oxidized CuSn alloys

    Full text link
    The internal oxidation of Sn was investigated to understand the oxidation kinetics of monophase CuSn alloys. SnO2 particles were characterized by analytical transmission electron microscopy. The orientation relationship between SnO2 and Cu was determined with a special emphasis on the atomic scale structure of Cu/SnO2 interfaces (misfit dislocations and chemical structure). Habit planes with a pure oxygen plane terminating the SnO2 phase are greatly favored and large misfits promote the growth of plate shaped precipitates

    Oxidation kinetics of a Ni-Cu based cermet at high temperature

    Get PDF
    The oxidation kinetics of a cermet composed of Ni–Cu alloy and nickel ferrite was studied by thermogravimetry at 960 °C under oxygen in the range 0.5–77 kPa. After an initial mass increase up to 15 g/m2 due to oxidation of surface metallic particles, the mass change was attributed to both outwards NiO growth and internal oxidation. Above 40 g/m2, the NiO scale thickness remained constant and the oxidation kinetics followed a complete parabolic law. The variations of the kinetic rate with oxygen partial pressure allowed to propose mechanisms, rate-controlling steps and kinetic laws in both transient and long term oxidation periods

    Water vapour effects of cyclic oxidation on Fe-Cr alloys

    Get PDF
    Fe-Cr alloys (Cr: 9-30 wt%) were subjected to cyclic oxidation in Ar-20%O2, Ar-20%O2-5%H2O and Ar-10%H2-5%H2O (partial pressure of oxygen, pO2 = 1.1 „ 10-16atm). Oxidation weight change measurement showed that in general, increasing Cr content reduced the oxidation rate. At Cr 25%, the weight gain became very low due to formation of Cr2O3 layer. Adding 5%H2O to Ar-20%O2 accelerated the oxidation rate of alloys with Cr < 20%. However, this accelerating effect did not appear in high chromium content alloys. XRD analysis showed that for alloys with Cr < 20%, wustite and spinel were formed at low pO2, while at high pO2, hematite, iron oxide and spinel were formed. For high Cr content alloy only Cr2O3 was detected. Cross-section analysis showed that the spinel was formed by internal oxidation. The thickness and size of this internal oxide zone increased with increasing Cr content. A dense chromia layer was observed when the Cr content was above 25%. The oxides scales formed in water vapour were more porous and less compact than the scale formed in dry oxygen. The accelerating effect of water vapour on Fe-Cr oxidation is discussed in terms of gas-solid interactions

    Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems

    Get PDF
    Protective coatings are used on gas turbine components to enable them to survive in engine-operating conditions. This study presents a recently developed cyclic burner-rig test that is used to simulate helicopter engine conditions and to assess the oxidation and hot corrosion behaviour of MCrAlY coatings on nickel-base superalloys. A diluted sea-salt solution is atomised into the burner-rig to simulate hot-corrosion. Each cycle lasts 1 h with temperatures varying in the range of 900 °C to 1000 °C followed by 15 min cooling to room temperature. Specimens are tested up to 1000 such cycles. Three different NiCoCrAlYTa coating thicknesses are used to determine the influence of the Al reservoir on the lifetime of the coated MC2 superalloy. The evolving microstructural features are identified using high resolution scanning electron microscopy and energy dispersive spectroscopy and compared with isothermal testing in pure oxidising conditions. The NiCoCrAlYTa microstructure obtained after the burner-rig test has typical features of a Type 1 hot corrosion degradation, with internal oxidation and nitruration and a front of chromium and yttrium-rich sulphides. This type of advanced burner-rig test cycle is successful in reproducing the accelerated combined hot-corrosion/oxidation damage

    Carburisation of ferritic Fe–Cr alloys by low carbon activity gases

    Get PDF
    Model Fe–Cr alloys were exposed to Ar–CO2–H2O gas mixtures at 650 and 800 °C. At equilibrium, these atmospheres are oxidising to the alloys, but decarburising (aC ≈ 10−15 to 10−13). In addition to developing external oxide scales, however, the alloys also carburised. Carbon supersaturation at the scale/alloy interface relative to the gas reflects local equilibrium: a low oxygen potential corresponds to a high pCO/pCO2 ratio, and hence to a high carbon activity. Interfacial carbon activities calculated on the basis of scale–alloy equilibrium are shown to be in good agreement with measured carburisation rates and precipitate volume fractions, providing support for the validity of the thermodynamic model

    Anomalous oxidation of Fe-Si alloys under a low oxygen pressure at 800 °C

    Get PDF
    The authors acknowledge financial support by NSFC of China under the research projects (Nos. 50971129 and 51371183).Abstract The oxidation of three Fe-xSi alloys (x = 5, 9, 13 at.%) under 10−20 atm O2 at 800 °C formed in all cases SiO2 layers. For Fe-5Si this layer broke down and healed up periodically forming an anomalous internal oxidation zone with spherical and net-shaped SiO2 particles. The SiO2 layer formed on the other two alloys spalled off due to the growth and thermal stress accumulated. The critical silicon content needed for its external oxidation on Fe-Si alloys calculated according to an extension of Wagner's theory under the present experimental conditions is significantly smaller than the experimental results.PostprintPeer reviewe
    • 

    corecore